Problem

Determine the voltage and current of each of the circuit elements in this circuit.

Hint: You'll need to specify reference directions for the element voltages and currents. There is more than on way to do that, and your answers will depend on the reference directions that you choose.

Solution

We can label the circuit as follows:

The subscripts suggest a numbering of the circuit elements. Apply KCL at node b to get

$$
i_{4}+0.25+0.75=0 \Rightarrow i_{4}=-1.0 \mathrm{~A}
$$

Next, apply KCL at node d to get

$$
i_{3}=i_{4}+0.25=-1.0+0.25=-0.75 \mathrm{~A}
$$

Next, apply KVL to the loop consisting of the voltage source and the 60Ω resistor to get

$$
v_{2}-15=0 \Rightarrow v_{2}=15 \mathrm{~V}
$$

Apply Ohm's law to each of the resistors to get

$$
\begin{gathered}
i_{2}=\frac{v_{2}}{60}=\frac{15}{60}=0.25 \mathrm{~A}, \\
v_{3}=10 i_{3}=10(-0.75)=-7.5 \mathrm{~V}
\end{gathered}
$$

and

$$
v_{4}=20 i_{4}=20(-1)=-20 \mathrm{~V}
$$

Next, apply KCL at node c to get

$$
i_{1}+i_{2}=i_{3}=0 \Rightarrow i_{1}=i_{3}-i_{2}=-0.75-0.25=-1.0 \mathrm{~A}
$$

Next, apply KVL to the loop consisting of the 0.75 A current source and three resistors to get

$$
v_{6}-v_{4}-v_{3}-v_{2}=0 \Rightarrow v_{6}=v_{4}+v_{3}+v_{2}=-20+(-7.5)+15=-12.5 \mathrm{~V}
$$

Finally, apply KVL to the loop consisting of the 0.25 A current source and the 20Ω resistor to get

$$
v_{5}+v_{4}=0 \Rightarrow v_{5}=-v_{4}=-(-20)=20 \mathrm{~V}
$$

Problem

Determine the voltage and current of each of the circuit elements in this circuit.

Hint: You'll need to specify reference directions for the element voltages and currents. There is more than on way to do that, and your answers will depend on the reference directions that you choose.

Solution

We can label the circuit as follows:
The subscripts suggest a numbering of the circuit elements. Apply KCL at node b to get

$$
i_{1}+1.5=0 \Rightarrow i_{1}=-1.5 \mathrm{~A}
$$

Apply KCL at node d to get

$$
i_{5}+0.5=1.5 \Rightarrow i_{5}=1.0 \mathrm{~A}
$$

Apply KCL at node f to get

$$
i_{8}+0.5=0 \Rightarrow i_{8}=-0.5 \mathrm{~A}
$$

Apply Ohm's law to each of the 10Ω resistors to get

$$
v_{1}=10 i_{1}=10(-1.5)=-15 \mathrm{~V}, \quad v_{5}=10 i_{5}=10(1)=10 \mathrm{~V} \text { and } v_{8}=10 i_{8}=10(-0.5)=-5 \mathrm{~V}
$$

Apply KVL to the loop consisting of the voltage sources and the 25Ω resistor to get

$$
-5+15+v_{4}=0 \Rightarrow v_{4}=-10 \mathrm{~V}
$$

Apply Ohm's law to the 25Ω resistor to get

$$
i_{4}=\frac{v_{4}}{25}=\frac{-10}{25}=-0.4 \mathrm{~A}
$$

Apply KCL at node a to get

$$
i_{1}+i_{2}=i_{4} \Rightarrow i_{2}=i_{4}-i_{1}=-0.4-(-1.5)=1.1 \mathrm{~A}
$$

Apply KCL at node e to get

$$
i_{6}+i_{8}=i_{4} \Rightarrow i_{6}=i_{4}-i_{8}=-0.4-(-0.5)=0.1 \mathrm{~A}
$$

Apply KVL to the loop consisting of the 1.5 A current source, the 5 V voltage source and two 10 Ω resistors to get

$$
v_{1}+v_{3}-v_{5}+5=0 \Rightarrow v_{3}=-5+v_{5}-v_{1}=-5+10-(-15)=20 \mathrm{~V}
$$

Finally, apply KVL to the loop consisting of the 0.5 A current source, the 15 V voltage source and two 10Ω resistors to get

$$
v_{7}+v_{8}-15+v_{5}=0 \Rightarrow v_{7}=15-\left(v_{5}+v_{8}\right)=15-(10+(-5))=10 \mathrm{~V}
$$

